Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Microbiol Spectr ; 12(5): e0322123, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38526142

RESUMEN

The emergence of antibiotic-resistant bacteria (ARB) has necessitated the development of alternative therapies to deal with this global threat. Bacteriophages (viruses that target bacteria) that kill ARB are one such alternative. Although phages have been used clinically for decades with inconsistent results, a number of recent advances in phage selection, propagation, and purification have enabled a reevaluation of their utility in contemporary clinical medicine. In most phage therapy cases, phages are administered in combination with antibiotics to ensure that patients receive the standard-of-care treatment. Some phages may work cooperatively with antibiotics to eradicate ARB, as often determined using non-standardized broth assays. We sought to develop a solid media-based assay to assess cooperativity between antibiotics and phages to offer a standardized platform for such testing. We modeled the interactions that occur between antibiotics and phages on solid medium to measure additive, antagonistic, and synergistic interactions. We then tested the method using different bacterial isolates and identified a number of isolates where synergistic interactions were identified. These interactions were not dependent on the specific organism, phage family, or antibiotic used. A priori susceptibility to the antibiotic or the specific phage were not requirements to observe synergistic interactions. Our data also confirm the potential for the restoration of vancomycin to treat vancomycin-resistant Enterococcus (VRE) when used in combination with phages. Solid media assays for the detection of cooperative interactions between antibiotics and phages can be an accessible technique adopted by clinical laboratories to evaluate antibiotic and phage choices in phage therapy.IMPORTANCEBacteriophages have become an important alternative treatment for individuals with life-threatening antibiotic-resistant bacteria (ARB) infections. Because antibiotics represent the standard-of-care for treatment of ARB, antibiotics and phages often are delivered together without evidence that they work cooperatively. Testing for cooperativity can be difficult due to the equipment necessary and a lack of standardized means for performing the testing in liquid medium. We developed an assay using solid medium to identify interactions between antibiotics and phages for gram-positive and gram-negative bacteria. We modeled the interactions between antibiotics and phages on solid medium, and then tested multiple replicates of vancomycin-resistant Enterococcus (VRE) and Stenotrophomonas in the assay. For each organism, we identified synergy between different phage and antibiotic combinations. The development of this solid media assay for assessing synergy between phages and antibiotics will better inform the use of these combinations in the treatment of ARB infections.


Asunto(s)
Antibacterianos , Bacteriófagos , Terapia de Fagos , Bacteriófagos/fisiología , Bacteriófagos/aislamiento & purificación , Antibacterianos/farmacología , Terapia de Fagos/métodos , Humanos , Medios de Cultivo/química , Pruebas de Sensibilidad Microbiana/métodos , Bacterias/virología , Bacterias/efectos de los fármacos , Farmacorresistencia Bacteriana
2.
bioRxiv ; 2023 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-37662290

RESUMEN

The emergence of antibiotic resistant bacteria (ARB) has necessitated the development of alternative therapies to deal with this global threat. Bacteriophages (viruses that target bacteria) that kill ARB are one such alternative. While phages have been used clinically for decades with inconsistent results, a number of recent advances in phage selection, propagation and purification have enabled a reevaluation of their utility in contemporary clinical medicine. In most phage therapy cases, phages are administered in combination with antibiotics to ensure that patients receive the standard-of-care treatment. Some phages may work cooperatively with antibiotics to eradicate ARB, as often determined using non-standardized broth assays. We sought to develop a solid media-based assay to assess cooperativity between antibiotics and phages to offer a standardized platform for such testing. We modeled the interactions that occur between antibiotics and phages on solid medium to measure additive, antagonistic, and synergistic interactions. We then tested the method using different bacterial isolates, and identified a number of isolates where synergistic interactions were identified. These interactions were not dependent on the specific organism, phage family, or antibiotic used. A priori susceptibility to the antibiotic or the specific phage were not requirements to observe synergistic interactions. Our data also confirm the potential for the restoration of vancomycin to treat Vancomycin Resistant Enterococcus (VRE) when used in combination with phages. Solid media assays for the detection of cooperative interactions between antibiotics and phages can be an accessible technique adopted by clinical laboratories to evaluate antibiotic and phage choices in phage therapy.

3.
Acta Biomater ; 162: 292-303, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36965611

RESUMEN

Fibrin is a naturally occurring protein network that forms a temporary structure to enable remodeling during wound healing. It is also a common tissue engineering scaffold because the structural properties can be controlled. However, to fully characterize the wound healing process and improve the design of regenerative scaffolds, understanding fibrin mechanics at multiple scales is necessary. Here, we present a strategy to quantify both the macroscale (1-10 mm) stress-strain response and the deformation of the mesoscale (10-1000 µm) network structure during unidirectional tensile tests. The experimental data were then used to inform a computational model to accurately capture the mechanical response of fibrin gels. Simultaneous mechanical testing and confocal microscopy imaging of fluorophore-conjugated fibrin gels revealed up to an 88% decrease in volume coupled with increase in volume fraction in deformed gels, and non-affine fiber alignment in the direction of deformation. Combination of the computational model with finite element analysis enabled us to predict the strain fields that were observed experimentally within heterogenous fibrin gels with spatial variations in material properties. These strategies can be expanded to characterize and predict the macroscale mechanics and mesoscale network organization of other heterogeneous biological tissues and matrices. STATEMENT OF SIGNIFICANCE: Fibrin is a naturally-occurring scaffold that supports cellular growth and assembly of de novo tissue and has tunable material properties. Characterization of meso- and macro-scale mechanics of fibrin gel networks can advance understanding of the wound healing process and impact future tissue engineering approaches. Using structural and mechanical characteristics of fibrin gels, a theoretical and computational model that can predict multiscale fibrin network mechanics was developed. These data and model can be used to design gels with tunable properties.


Asunto(s)
Fibrina , Cicatrización de Heridas , Fibrina/química , Estrés Mecánico , Geles/química , Simulación por Computador
4.
J Voice ; 37(3): 348-354, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-33541766

RESUMEN

OBJECTIVES: The understanding of vocal fold hydration state, including dehydrated, euhydrated, rehydrated tissue, and how hydration affects vocal fold biomechanical properties is still evolving. Although clinical observations support the benefits of increasing vocal fold hydration after dehydrating events, more mechanistic information on the effects of vocal fold dehydration and the beneficial effects of rehydration are needed. Alterations to hyaluronic acid (HA), an important component of the vocal fold extracellular matrix, are likely to influence the biomechanical properties of vocal folds. In this study, we investigated the influence of hydration state and HA on vocal fold tissue stiffness via biomechanical testing. STUDY DESIGN: Prospective, ex vivo study design. METHODS: Fresh porcine vocal folds (N = 18) were examined following sequential immersion in hypertonic (dehydration) and isotonic solutions (rehydration). In a separate experiment, vocal folds were incubated in hyaluronidase (Hyal) to remove HA. Control tissues were not exposed to any challenges. A custom micromechanical system with a microforce sensing probe was used to measure the force-displacement response. Optical strain was calculated, and ultrasound imaging was used to measure tissue cross-sectional area to obtain stress-strain curves. RESULTS: Significant increases (P ≤ 0.05) were found in tangent moduli between dehydrated and rehydrated vocal folds at strains of ε = 0.15. The tangent moduli of Hyal-digested tissues significantly increased at both ε = 0.15 and 0.3 (P ≤ 0.05). CONCLUSION: Vocal fold dehydration increased tissue stiffness and rehydration reduced the stiffness. Loss of HA increased vocal fold stiffness, suggesting a potential mechanical role for HA in euhydrated vocal folds.


Asunto(s)
Deshidratación , Pliegues Vocales , Porcinos , Animales , Pliegues Vocales/fisiología , Fenómenos Biomecánicos , Hialuronoglucosaminidasa/farmacología , Estudios Prospectivos
5.
Acta Biomater ; 134: 466-476, 2021 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-34303012

RESUMEN

The mechanical properties of tissues are critical design parameters for biomaterials and regenerative therapies seeking to restore functionality after disease or injury. Characterizing the mechanical properties of native tissues and extracellular matrix throughout embryonic development helps us understand the microenvironments that promote growth and remodeling, activities critical for biomaterials to support. The mechanical characterization of small, soft materials like the embryonic tissues of the mouse, an established mammalian model for development, is challenging due to difficulties in handling minute geometries and resolving forces of low magnitude. While uniaxial tensile testing is the physiologically relevant modality to characterize tissues that are loaded in tension in vivo, there are no commercially available instruments that can simultaneously measure sufficiently low tensile force magnitudes, directly measure sample deformation, keep samples hydrated throughout testing, and effectively grip minute geometries to test small tissues. To address this gap, we developed a micromanipulator and spring system that can mechanically characterize small, soft materials under tension. We demonstrate the capability of this system to measure the force contribution of soft materials, silicone, fibronectin sheets, and fibrin gels with a 5 nN - 50 µN force resolution and perform a variety of mechanical tests. Additionally, we investigated murine embryonic tendon mechanics, demonstrating the instrument can measure differences in mechanics of small, soft tissues as a function of developmental stage. This system can be further utilized to mechanically characterize soft biomaterials and small tissues and provide physiologically relevant parameters for designing scaffolds that seek to emulate native tissue mechanics. STATEMENT OF SIGNIFICANCE: The mechanical properties of cellular microenvironments are critical parameters that contribute to the modulation of tissue growth and remodeling. The field of tissue engineering endeavors to recapitulate these microenvironments in order to construct tissues de novo. Therefore, it is crucial to uncover the mechanical properties of the cellular microenvironment during tissue formation. Here, we present a system capable of acquiring microscale forces and optically measuring sample deformation to calculate the stress-strain response of soft, embryonic tissues under tension, and easily adaptable to accommodate biomaterials of various sizes and stiffnesses. Altogether, this modular system enables researchers to probe the unknown mechanical properties of soft tissues throughout development to inform the engineering of physiologically relevant microenvironments.


Asunto(s)
Procedimientos Quirúrgicos Robotizados , Animales , Materiales Biocompatibles , Matriz Extracelular , Fenómenos Mecánicos , Ratones , Estrés Mecánico , Ingeniería de Tejidos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...